NuMI Analysis

Sharon Seun

Outline

- 1. Introduction
- 2. Data Selection & PID
- 3. Analysis Procedure
- 4. NuMI Target Results
- 5. Conclusion

Introduction

- Goal of this analysis is to measure the production ratios from the NuMI target
 - $-\pi^{-}/\pi^{+}, K^{-}/K^{+}, \pi^{+}/K^{+}, \pi^{-}/K^{-}$
- Data used
 - 2 million NuMI target
 - Full data set from summer 2005
- Monte Carlo simulation
 - FLUKA-2006 for proton-NuMI interaction
 - Geant for tracking along the beam line and through the detectors
- Reconstruction
 - Analysis using tracking and RICH PID only

Data Selection & Particle Identification

Beam Selection

- NuMI trigger selection

 All 2 mm trigger

 All 6 mm trigger
- Beam selection

$$|x| < 0.45 \ cm$$

Only < 0.5% of events is cut

Track Selection

- Interaction vertex ≥ 2 tracks from a vertex
- Vertex from target Radial cut:

 $r \le 1.5 \ cm$

Longitudinal cut:

 $front \le z \le end \ of \ target$

Momentum Selection

Due to limitations imposed by the detector acceptance and particle limitation of the RICH, only consider reconstructed particle with

$$20 \text{ GeV/c} < p_z < 90 \text{ GeV/c}$$

$$p_T < 2 \text{ GeV/c}$$

Binning Scheme (p_z, p_T)		p_z (GeV/c)				
		20-24	24-31	31-42	42-60	60-90
	1.0-2.0		(1,4)	(2,4)	(3,4)	(4,4)
	0.6-1.0	(0,3)	(1,3)	(2,3)	(3,3)	(4,3)
p_T (GeV/c)	0.4-0.6	(0,2)	(1,2)	(2,2)	(3,2)	(4,2)
$p_T(0)$	0.2-0.4	(0,1)	(1,1)	(2,1)	(3,1)	(4,1)
	0.0-0.2	(0,0)	(1,0)	(2,0)	(3,0)	(4,0)

Particle Classification

Data/MC Comparison for π^+

Data/MC Comparison for π^-

Data/MC Comparison for K⁺

Data/MC Comparison for K-

Analysis Procedure

Analysis Overview

- 1. Apply corrections to extract true particle yields from data versus true momentum
- 2. Employ iterative approach to tune MC to look like data (background estimation)
- 3. Study systematic errors on the production ratios

Evaluation of Corrections

1. Purity Correction, P

Subtract background events from selected sample

2. Momentum Correction, M

Translate a reconstructed momentum distribution to true momentum

3. Efficiency Correction, E

Accounts for events which are not correctly reconstructed by algorithms

Application of Corrections

$$N_x^j = \sum_{i=1}^{nbins} \frac{P_x^i}{E_x^j} M_x^{ij} n_x^i$$

where N_x^j = predicted # of true x in true momentum bin j n_x^i = # of reconstructed x in reconstructed momentum bin i

Purity Correction

Momentum bin

Momentum bin

Definition of Purity

$$P_x^i = \frac{t_x^x}{t_x}$$

where t_x = number of reconstructed x

 t_x^x = number of true x

reconstructed to be x

i = reconstructed momentum bin

Momentum Correction

Definition of Momentum Matrix

$$B^{j} = \sum_{i=1}^{nbins} M_{x}^{ij} b^{i}$$

$$\sum_{j=1}^{nbins} M_x^{ij} = 1$$

where $B^{j} = \#$ of events in true bin j

 $b^{i} = \#$ of events in reconstructed bin i

 $M_x^{ij} = \#$ of x to assigned to true bin jfor each event observed in reconstructed momentum bin i

Efficiency Correction

Definition of Efficiency

$$E_x^j = \frac{t_x^x}{T_x}$$

where T_x = number of true x in MC j = true momentum bin

- In order to improve the accuracy of MC, an iterative, data-driven approach is adopted.
- Define yield for x from data (if x is positive)

$$f_{x} = \frac{N_{x}}{N_{\pi^{+}} + N_{K^{+}} + N_{p^{+}}}$$

and yield for x from MC

$$F_{x} = \frac{T_{x}}{T_{\pi^{+}} + T_{K^{+}} + T_{p^{+}}}$$

- Use data/MC yield ratio, $w_j = f_j/F_j$, to reweight the MC truth in each true momentum bin
- Change in yield ratios, $(w^{k+1}_{j} - w^{k}_{j})/w^{k}_{j}$, between k^{th} and $(k+1)^{th}$ iterations come to stable values and approach 0 after 7 iterations

Agreement in reconstructed spectra between data and MC improves after iterative procedure

Particle	χ² Before Iteration	χ² After Iteration
$\pi^{\scriptscriptstyle +}$	915.06	1109.29
$\pi^{\scriptscriptstyle{-}}$	526.26	500.59
K^+	423.79	270.77
<i>K</i> -	169.51	73.02
$p^{\scriptscriptstyle +}$	4022.47	2492.96
$p^{\text{-}}$	134.97	44.09
Sum	6192.06	4490.72

Systematic Errors

- Effect of systematic errors on ratios have been calculate using the MC
- Estimation of systematic errors induced by
 - Beam tuning
 - Momentum bias
 - Background subtraction

Beam Systematic Error

- Motivation: difference between data and the MC beam width (MINOS)
- Increase/decrease beam width by 0.1mm in x and 0.2mm in y

Momentum Systematic Error

8.474

 119 ± 0.0

- Motivation: reconstructed momentum in data is smaller than in MC for 120GeV/c proton beam
- Increase/decrease reco momentum by $\pm 3\%$

Background Systematic Error

- Main systematic error is expected to come from background subtraction
- Procedure:
 - Normalize data/MC reconstructed momentum distribution by area
 - For each particle x, in bin i:
 - $d_x(i) = n_x^{MC}(i) n_x^{data}(i)$
 - Background systematic error in each bin *i* is then given by $\pm d_x(i)$
 - Translates into an error on purity correction in analysis
 - Upper and Lower systematic errors on production ratio x/y are determined by varying x and y independently
 - Upper error given by maximum change in ratio due to:
 - increase in purity on numerator
 - decrease in purity on denominator
 - Vice versa for Lower systematic error on ratio

NuMI Target Results

NuMI Results

Compared to MC

- Substructure in NuMI data similar to MC
- MC overestimates π^-/π^+ and K-/K+, while underestimate K+/ π^+

Compared to C data

- NuMI data show a steeper structure in p_T for π^-/π^+ and K^+/π^+
- NuMI data have higher
 K⁺/π⁺ in most bins agree
 with the asymmetric error
 bars in C data

Comparison for NuMI/C Data and MC

- Primary difference between NuMI and thin C expected to be effect of re-interaction in the NuMI target
- NuMI/C data and NuMI/C MC agree within errors

 π^{-}/π^{+} "suggests" that MC models extrapolate from thin to thick targets reasonably well

Comparison with MINOS Models

- Significant differences between NuMI data and MINOS MC models
- However, reasonable agreement with MINOS refit
 - Refit is driven by MINOS Near detector data
 - Primary difference: K^{\pm}/π^{\pm} at high p_z

Conclusions

- π^-/π^+ , K-/K⁺, K[±]/ π^\pm ratios for p+NuMI are presented for the high momentum region with p_T < 2GeV/c and $20 < p_z < 90$ GeV/c
- NuMI data generally agree with MINOS Refit
 - Poorer agreement with MIPP MC and other MC models
 - NuMI Data/MC ratios consistent with thin C results
- Data provide important information for neutrino spectrum prediction in MINOS from the NuMI beam, and MC hadron production models